Outlook 2022 - Sustainability

Cathal Buckley

Teagasc, Agricultural Economics & Farm Surveys Department

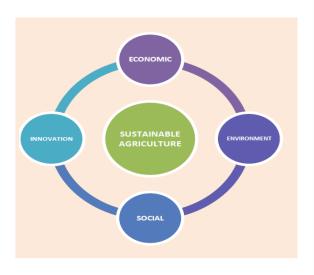
Rural Economy and Development Programme

December 13th 2022

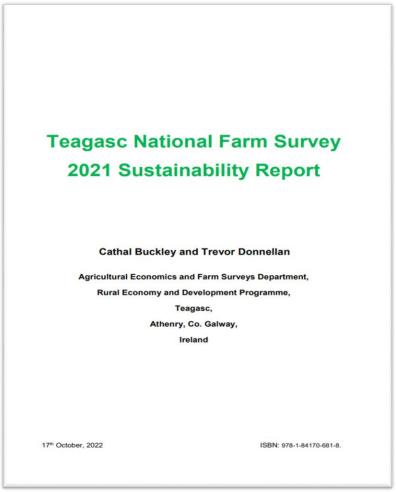
Overview

Sustainability conceptual framework

Methodological approach used for projecting for 2022


Projections results for 2022

Summary / conclusion



Teagasc NFS Sustainability Report

- Farm level sustainability is intersection of:
 - 1. Economic
 - Environmental
 - 3. Social
 - 4. Innovation

- The 2021 Teagasc Sustainability Report
 - Published in October 2022
 - 7th report since 2013

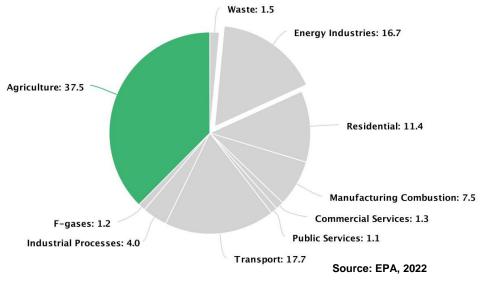
https://www.teagasc.ie/rural-economy/rural-economy/national-farm-survey/sustainability-reports/

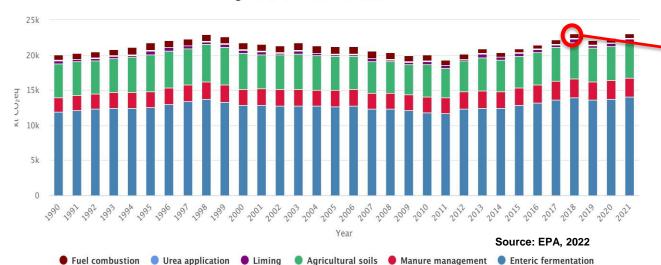
Environmental Sustainability

- 1. Gaseous Emissions
 - Greenhouse Gases
 - Ammonia

2. Risk to water quality

3. Biodiversity Indicator





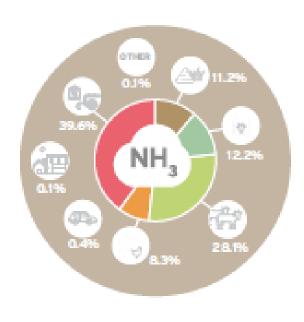
Gaseous Emissions - Agriculture

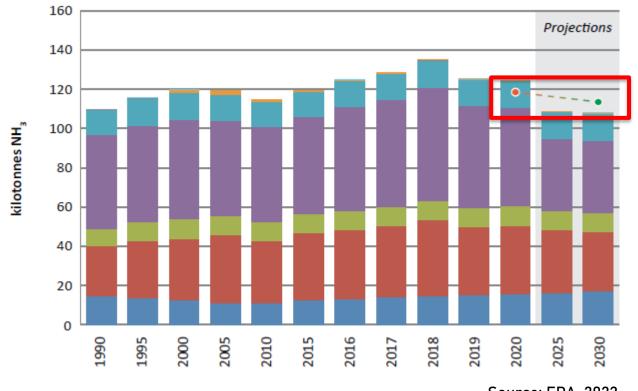
Agriculture sector emissions share 2021

Climate Action Plan 2021: GHGs

 Sectoral GHG reduction targets for 2030 (compared to 2018)

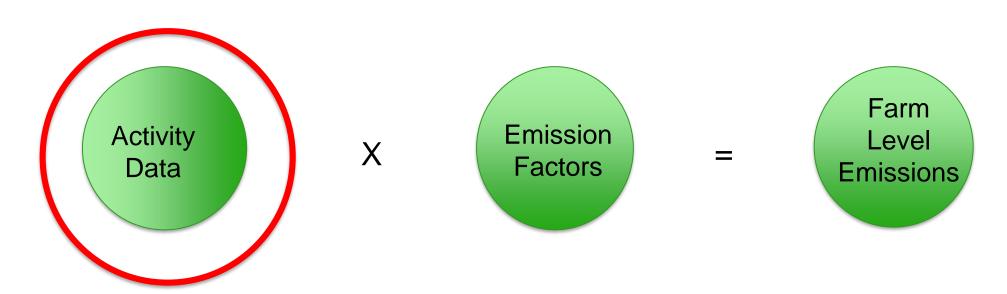
Agriculture: 25%


22.4 Mt in 2018 to 16.8Mt in 2030


Carbon neutrality by 2050

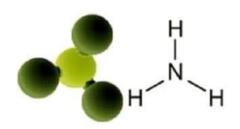
Gaseous Emissions - Ammonia

99.4% of Ammonia Emissions generated from Agriculture (EPA, 2022)



Source: EPA, 2022

Emissions – How are they calculated


- Activity Data
 - Farm Practice (e.g. animal numbers, chemical fertilisers & manure management)
- Emission Factors
 - Scientific evidence from lab/field experiments, national level if possible (peer reviewed)

Methodological approach – Emission Factors

- GHG All in common currency of CO₂ equivalence
 - » IPCC based national inventory approach for all farm types
 - » Replicating approach used by EPA at national level
 - » CO₂ equivalent in the base gas (1=1)
 - Methane (CH_4) 1 tonne = 28 tonnes of CO_2 equivalent
 - Nitrous Oxide $(N_2O)1$ tonne = 265 tonnes of CO_2 equivalent
- Ammonia (NH₃)
 - » National inventories approach for all farms
 - » Replicating approach used by EPA at national level for reporting under the EU NEC Directive

Methodological approach – Activity Data

- Activity data from Teagasc National Farm Survey
- NFS conducted by Teagasc since 1972 (part of EU Farm Accountancy Data Network)
 - Sample of 821 farms in 2021 representing over 83,771 nationally
 - Reports on main land based systems Dairy, Cattle, Sheep & Tillage
- Data capture for environmental modelling
 - Animal numbers by category (e.g. Dairy Cows)
 - Crops grown (e.g. barley, wheat, oats)
 - Fertilisers applies (e.g. CAN, urea, protected urea)
 - Lime applied
 - Manure management practices (housing, storage, landspreading)
 - Technology Adoption

Activity Data Projections / Assumptions – 2022

- Animal Numbers & Chemical Fertilisers applied are key parameters Type and quantity
- 1. Animal Inventories
 - CSO June survey 2021 vs 2022
- 2. Chemical Fertiliser Sales
 - Sales data DAFM Sept 2021-October 2022
- 3. Technology adoption
 - Gaseous Emissions Mitigation
 - » LESS use to increase in line with historical trends
- Apply these changes to farms with the Teagasc NFS
 - Using 2021 as the base year

Cattle Numbers June 2021 vs 2022

Animal inventories	2021 vs 2022
Total cattle	0.51%
Dairy cows	1.42%
Other cows	-2.88%
Bulls	-4.17%
Cattle: 2 years and over	2.38%
Cattle: 1-2 years	2.01%
Cattle: under 1 year	-0.54%

Enteric Fermentation EF Co-efficients	2021
Animal Category	
Dairy cows	120.19
Beef cows (Suckler Cows)	72.27
Dairy heifers	53.60
Beef heifers	57.10
Cattle < I year	33.23
Cattle < 1 yrs - male	34.70
Cattle < 1 yrs - female	31.88
Cattle 1 - 2 yrs	55.02
Cattle 1 - 2 yrs - male	58.09
Cattle 1 - 2 yrs - female	51.41
Cattle > 2 yrs	28.72
Cattle > 2 yrs - male	33.97
Cattle > 2 yrs - female	20.28
Bulls for breeding	91.38

Sheep Numbers June 2021 vs 2022

Animal inventories	2021 vs 2022	
Total sheep	6.39%	
Ewes	3.27%	
Rams	-1.76%	
Other sheep	7.55%	

Chemical Fertiliser - Nitrogen

	2021*	2022*	% change
Total	399,160	343,193	-14%
Straight CAN	140,127	109,548	-21.8%
Straight Urea	40,687	52,823	29.8%
Protected Urea	20,540	31,282	52.3%
NK Compounds	2,947	2,632	-10.7%
NP Compounds	2,404	1,670	-30.5%
NPK Compounds	189,071	142,078	-24.9%
Other N Fertilisers	3,384	3,160	-6.6%

^{*} September to October sales year (DAFM,2022)

Chemical Nitrogen GHG Emission Factors

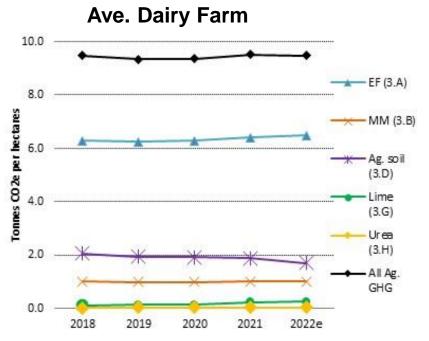
GHG linked Emission factors	(kgN2O-N/Nkg)	EF Multiple
CAN	0.0140	1.0
Straight Urea	0.0025	5.6
Protected Urea	0.0040	3.5

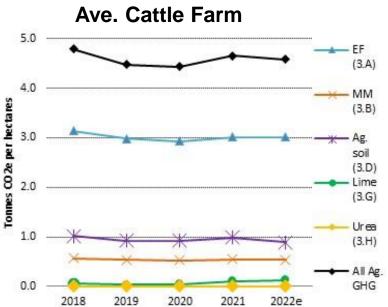
Source: EPA, 2022

Liming Rates

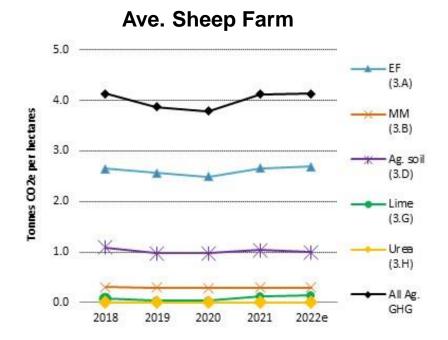
Lime sales increased by 50% in 2021 to 1.3 million tonnes

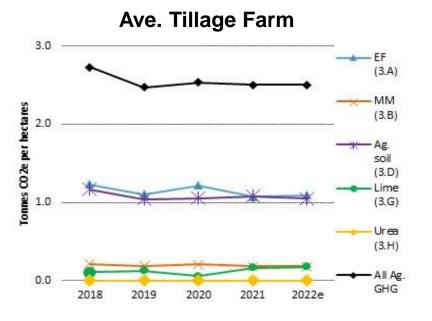
- Lime applied also increased by circa 18% between 2021 and 2022 January to September (DAFM, 2022)
 - 12% Carbon in Lime 120kg of CO₂ per tonne of Lime
- Increased soil fertility / nutrient use efficiency
 - Only captured in GHG inventories if chemical N is reduced on the back on improved soil fertility

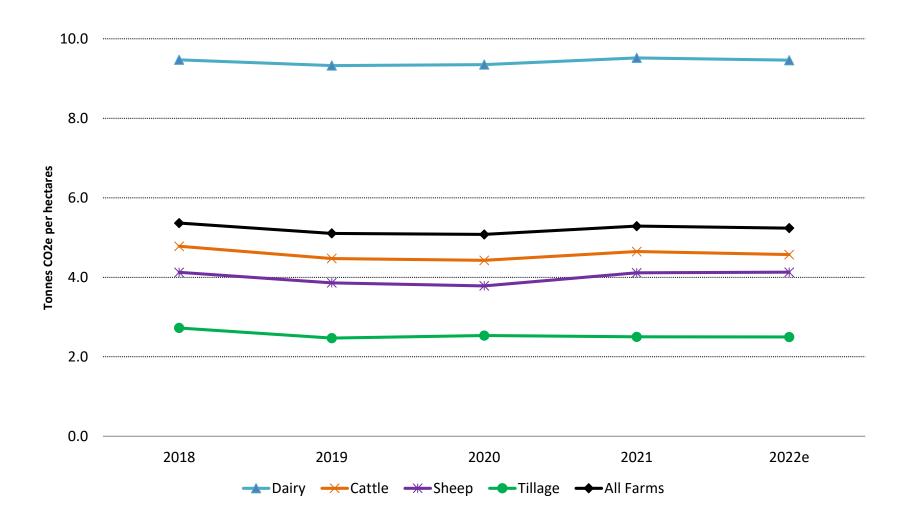



GHG emissions profile for Agriculture in ROI 2021

3. Agriculture (kt CO2 eq)	2021	%
3.A Enteric Fermentation (CH₄)	14,013	62%
3.B Manure Management (CH ₄ & N ₂ O)	2,707	12%
3.C Rice Cultivation	2,707	1270
	-	-
3.D Agricultural Soils (N ₂ O)	5,031	22%
3.E Prescribed Burning of Savannas	-	-
3.F Field Burning of Agricultural Residues	-	-
3.G Liming (CO ₂)	597	3%
3.H Urea Application (CO ₂)	102	0%
3.I Other Carbon-containing fertilizers		
3.J Other		
Total Emissions (kt CO ₂ eq)	22,451	100%




Projections for 2022 for GHG emissions tonnes per hectare NFS Farms – IPCC Category


18

GHG tonnes emissions per hectare by Farm System

NH3 National Inventory Accounts

Total NH ₃ emissions (kilotonnes NH ₃)	2020	%
Cattle (Manure Management + Grazing)	95.0	77%
Pigs	6.3	5%
Sheep (Manure Management + Grazing)	2.7	2%
Poultry	4.9	4%
Horses	1.8	1%
Mules	0.1	0%
Goats	0.0	0%
Chemical Fertilizer	11.4	9%
Other	0.4	0%
National Total	122.7	100%

Activity Levels - Revisited

Cattle Numbers June 2021 vs 2022

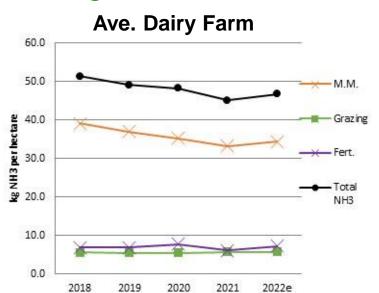
Animal inventories	2021 vs 2022
Total cattle	0.51%
Dairy cows	1.42%
Other cows	-2.88%
Bulls	-4.17%
Cattle: 2 years and over	2.38%
Cattle: 1-2 years	2.01%
Cattle: under 1 year	-0.54%

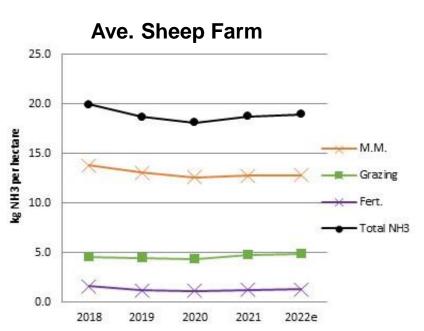
Sheep Numbers June 2021 vs 2022

Animal inventories	2021 vs 2022	
Total sheep	6.39%	
Ewes	3.27%	
Rams	-1.76%	
Other sheep	7.55%	

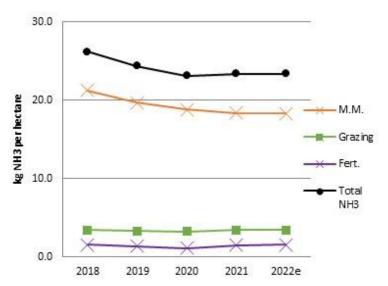
Chemical Fertiliser

	2021*	2022*	% change
Total	399,160	343,193	-14%
Straight CAN	140,127	109,548	-21.8%
Straight Urea	40,687	52,823	29.8%
Protected Urea	20,540	31,282	52.3%
NK Compounds	2,947	2,632	-10.7%
NP Compounds	2,404	1,670	-30.5%
NPK Compounds	189,071	142,078	-24.9%
Other N Fertilisers	3,384	3,160	-6.6%

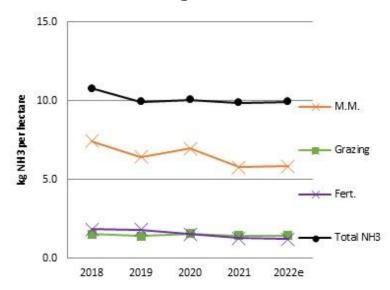

NH₃ Emission Factors

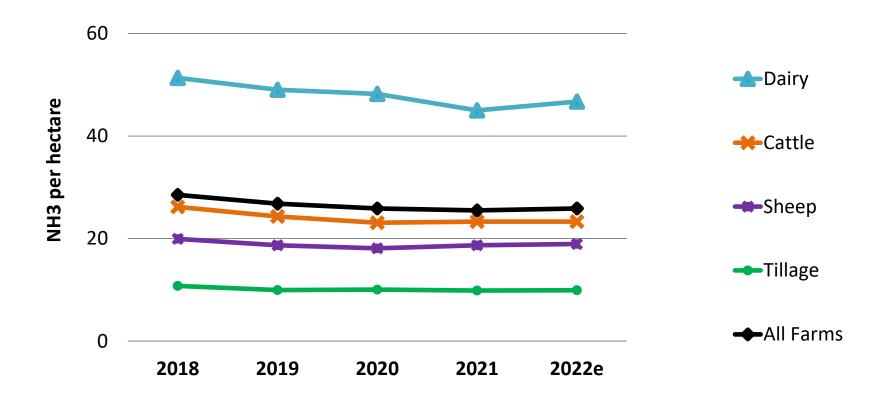

N Excretion Rates (kg/head/yr)	2021
Animal Category	
DairyCows	110.22
Cows Excluding Dairy Cows	75.04
Dairy Heifers	72.44
Other Heifers	76.58
Cattle 0 - 1 yrs male	35.03
Cattle 0 - 1 yrs female	32.42
Cattle 1 - 2 yrs male	73.72
Cattle 1 - 2 yrs female	69.77
Cattle > 2 yrs male	46.07
Cattle > 2 yrs female	44.57
Bulls	86.68
Ewes Lowland	12.573
Ewes Upland	9.374
Rams - lowland	11.383
Rams - upland	9.769
Other Sheep>1 - lowland	12.893
Other Sheep>1 - upland	9.916
Lambs - lowland	3.675
Lambs - upland	4.322

Ammonia Emission factors - Chemical N fertiliser	(NH3 - g per kg)	EF Multiple
Straight Urea	155	1.0
CAN	8	19.4
Protected Urea	33	4.7



NH₃ emissions kg per hectare by Farm System





Ave. Tillage Farm

NH3 emissions kg per hectare – Farm System

Summary / Conclusion

Higher animal activity levels in 2022

- June cattle number +0.51%
 - » Dairy Cows +1.42%
- Sheep numbers +6.39%
 - » Ewes +3.27%

Reduction in the quantity of chemical N fertilisers applied in 2022

- Chemical N sales (Sept-Oct) down by 14%
- Reduction in CAN positive for GHG emission reductions
- Increased use of straight urea, positive for GHG but not ammonia
- Protected urea increased to 9% of total chemical N sales

Absolute GHG Emissions in 2022 estimates:

- Slight decline on dairy and cattle farms (compared to preceding years)
- Other farm systems static (sheep and tillage)

Absolute NH3 Emissions in 2022 estimates:

- Projected to increase slightly on dairy and sheep farms
- Other farm systems static (Cattle and Tillage)

Thank You

cathal.buckley@teagasc.ie

