

Improving N balance

- Reduce use of chemical N
- ✓ Reduce concentrate inputs
- ✓ Increase animal performance

Benefits for beef production systems

Enhanced economic and environmental

The role of forage legumes

- Grazed or conserved
- Biological fixation (BNF) capability
- Support low N systems of higher:
 - Herbage production
 - Sward quality
 - Animal performance
- White and red clover most relevant to Irish systems

Red clover

Pros

- ✓ High BNF (>200 kg N/ha)
- High DM production (>15 t DM/ha)
- High intake potential
- High animal performance

Cons

- Grazing
- Poor persistence (3-4 years)
- 4-year break
- Difficult to ensile

Establishment

- UK Recommended List
 - Heading date
 - Ploidy
- Spring reseed
 - 20-22 kg/ha (3-4 kg/ac)
 - Sown with perennial ryegrass
- Grown in rotation
 - 4-year break

Growth habit of red clover

Red clover

White clover

Management

- Multi-cut silage system
 - 3-cut (mid-May to September)
 - Infrequent cuts (6-8 week intervals)
 - Wilt but avoid leaf shatter (<48 hr)
- Avoid chemical N application!
 - Why?
 - Reduced clover content
 - Lower BNF
 - Reduced DM production
 - Reduce persistence

Herbage production

Stable yields of >15 t DM/ha over multiple years

Hawyost	PRG+RC		PRG		
Harvest	(kg DM	kg DM/ha) (kg DM		/ha)	
Cut 1	6 36	54	6 683		
Cut 2	(0 kg 4 45	19	3 610	(412 kg	
Cut 3	N/ha) 3 84	.7	3 222	N/ha)	
Cut 4	1 11	5	2 183		
Total	15.78	85	15 698		

(Clavin et al., 2017)

2022 red clover performance

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Feeding value

- Red clover/grass silage has increased intake potential
- Chemical and morphological characteristics support increased DMI and animal performance
- Crude feed values underestimate performance potential

Digestibility

- Higher red clover content reduces silage digestibility
 - Erect growth habit requires substantial stem
- Contains high ratio of indigestible fibre
- However, digestion rate of fibre is faster
- Smaller particle size in the rumen
- Combined these characteristics increase rate of passage and reduce rumen fill

Protein

- Dietary N concentration and intake increase with rising red clover content of silages
- Lower degradability of red clover silage proteins
 - Protective mechanisms reduce protein degradability
 - » Silo and rumen
- Crude protein levels may appear low under zero N application

2022 red clover feeding value

Feed value	First-cu ⁷ RC+PR %		Second-C	eut (July) PRG
Dry matter digestibility (DMD %)	75.9	71.2	65.3	76.6
Organic matter digestibility (OMD %)	75.1	70.1	62.9	75.5
Neutral detergent fibre (NDF %)	59.5	61.7	47.6	53.0
Crude protein (CP %)	12.5	14.0	16.7	13.9
Ash (%)	8.8	10.2	10.0	9.6

Animal performance

- Increased DMI leads to higher animal performance despite often lower digestibility
 - Weanlings: +0.3 kg ADG +2 kg DMI/day vs grass silage of similar digestibility
 - Finishing: At 12% difference in digestibility, intake increased by 1.7 kg to support the same ADG

 Where is the response greatest from red clover silages? (first winter or finishing)

Relative cost of grass and red clover-grass silage

	Grass silage 2- cut system	Red clover silage 3-cut system	Red clover silage 3-cut system - all slurry
	€/bale (€ t DM)	€/bale (€ t DM)	€/bale (€ t DM)
Fertiliser (incl. spreading)	€11.89 (€59)	€7.1∕ (€34)	€4.1/ €20)
Harvesting costs (incl. plastic)	€24.48 (€122	€5,40	€8.40
Other (feeding, herbicides etc.)	€2.49 (€12)	4)	€/
Fixed costs (reseeding/facilities)	€2.77 (€14)	€4.78 (€2 5)	€4.78 (€23)
Total costs (excl. land charge)	€41.6 (€208)	€38.3 (€184)	€35.3 (€170)
Sensitivity analysis			
25 % change in fert price (+/-)	€2.1 (€10)	€1.1 (€6)	€0.0 (€0)
4-year to 6-year persistency for RC		€-2.1 (€-11)	€-2.0 (€-11)

Current research

New Teagasc research investigating the potential of red clover across Irish beef and dairy systems

Agronomy

- » Variety evaluation
- » N application
- » DM production
- » Persistency

Feeding value

- Intake
- Performance
- Conversion efficiency
- NUE

Farm system

- ❖ N Balance
- Economic
- Environmental
- Relative feed costs

Conclusions

- Opportunity to reduce dependence on chemical N
 - Fixing between 200-300 kg N/ha
- Potential for improved animal performance?
- Does it suit your farm system?
 - Increased management
 - Silage production
 - Drier soils
- Lower cost of production
 - Yield, persistence, fertiliser price

